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Interpolation by Harmonic Polynomials

by

J.H. Curtiss

University of Miami

1. Introduction. Let U be a function on an open set D in the

complex s-plane, z - x + iy, to the real numbers. The function U

is said to be harmonic on D if it is continuous there together with

its partial derivatives of the first two orders with respect to x and

y, and if it satisfies Laplace's equation

2 U 2 .+ = 0.

A function is said to be harmonic at a point if it is harmonic in

some neighborhood of the point. In what follows, we generally shall

tak,3 D to be a region, by which we mean a non-empty open connected

subset of the plane.

Suppose now that on the boundary C of a region D a continuous

f'unction u from C to the real numbers is given. It is well known

that if D satisfies certain mild restrictions - for example, if its
complement is such that no component reduces to a point - then there

exists a unique function U harmonic on D and continuous on D + C

which coincides with u on C. The construction of this function U

(or in purely theoretical contexts, the proof of its existence) is

the substance of the famous Dirichlet problem, or first boundary

value problem of potential theory. There are many applications,

This research was supported by the United States Air Force through
the Air Force Office of Scientific Research of the Air Research and
Development Command, under Contract No. AF 49(638) - 862.

An up-to-date introduction to the problem will be found in [, Chapter V].
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and generalizations of the two-dimensional formulation given here.

A good many years ago, J.L. Walsh [13] [14] raised a question as

to whether it might not be possible to represent the solution of the

Dirichlet problem as the limit of a sequence of harmonic polynomials

found by interpolation to the boundary data u on C in suitably chosen

points. Although a number of constructive methods of finding solu-

tions of the Dirichlet problem are now known, the suggestion of Walsh

might yield a particularly simple analytic approximation process, if

only a reasonably general convergence theory for it could be provided.

It would appear that this has never been done heretofore. In the

present paper, it is established that there exist convergent sequences

of harmonic interpolation polynomials for a wide class of regions and

boundary data,, but the last word on the general subject has not been

said by any means.

In the references given above, Walsh indicates how to obtain an

affirmative answer to his question for the special case in which C is

a circle. Recently [18] he has supplemented this with a solution for

the ellipse, but it is one in which it is necessary to impose a

smoothness condition on the boundary data u beyond continuity. Conver-

gence is then achieved on the ellipse as well as interior to it.

Practical considerations and experience with similar but easier problems

in complex polynomial interpolation suggest that the primary goal of

a general convergence theory in the present problems might well be to

establish convergence inside the region under minimal hypotheses on

u and C, without regard to convergence on the boundary, where the

problem is more delicate and where in the applications the sought-for

function is known anyhow.

A survey of the general problem and of the analogous one for

complex polynomial interpolation has recently been published by the

author (U4, in which a necessary and sufficient condition for conver-
gence based on linear operator theory is given. But the condition

* For instance, the gap in theory is noted by Krylov (17, p. 489]. He
presents in (17] a formal construction of the Green's function by
harmonic polynomial interpolation, and in a numerical illustration
it seems to give good results.
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gives little indication as to whether in a given instance there exists

a convergent sequence of harmonic interpolation polynomials and as to

how to construct it if so.

In the present paper we first (Section 2) examine the structure

of harmonic interpolation polynomials. It is proved that for any

bounded region there always exists a point set S on the boundary such

that a harmonic polynomial of degree at most n which assumes 2n + 1

preassigned values at 2n + 1 of these points S will be uniquely

determined for n - 1, 2, ... . The existence question requires some

attention because unlike in the case of complex polynomial interpola-

tion there can be situations involving distinct points of interpolation

in which the harmonic interpolation polynomial of appropriate degree

is indeterminate. A study of the structure of the interpolation

polynomial is important because the basic difficulty in the whole con-

vergence problem for harmonic polynomial interpolation is the absence

of any compact formulas like the Lagrange and the Cauchy-Hermite

interpolation formulas which are available in the complex polynomial

case.

In Section 3 the convergence properties of harmonic interpolation

polynomials are related to other types of harmonic polynomial approxima-

tions. It is thereby proved (1422= 3.4) that for any region with a

reasonably smooth boundary C and for any boundary data u possessing a

smooth first derivative it is possible to solve the Dirichlet problem

in terms of the limit of a sequence of harmonic polynomials found by

interpolation to u on the boundary. The convergence takes place in

the closed region. Generalizations and sitiations in which restrictions

on the boundary can be eliminated are indicated. The results of this

section do give an affirmative answer to Walsh's original question for

a wide class of regions and boundary values, but they do not provide

very explicit instructions as to how to choose successful interpolation

points in practice.

Finally in Section 4 we consider a special choice of interpolation

points which is the natural analogue, for a general boundary curve, of

points equally spaced on a circle. For the cases of the circle and the

ellipse, explicit formulas are derived for the harmonic interpolation
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polynomials. The derivation is based on the classical Faber polynomia.90

Convergence is proved for continuous boundary values. Although Walsh's

results [181 anticipate these to some extent, the formula for the poly-

nomial for the ellipse is new, as is the proof of convergence inside

the ellipse with no smoothness conditions on the boundary data beyond

continuity.

The methods are largely elementary, in the sense that they are

based on material usually covered in good first courses in classical

complex variable theory and linear algebra. It is only in the proof

of Theorem 3.4 that references to sophisticated work on approximation

theory and conformal mappings are needed.

This is a paper on theory, not on practice, but it does contain

at least one indication as to how the theory might be put to work in

the computation laboratory. The all-important issue in the practical

applications will certainly be the correct choice of the interpolation

points on the boundary C of the region. It is shown below in Section

3, Theorems 3.2, 3.3, and 3.4, that in many, if not all cases, the

successful choice of the points for the interpolation polynomial of

n-th degree will be a choice which maximizes the absolute value of a

certain determinant which first ippears in the display (2.3) below.

(The polynomials pj(z) which appear in (2.3) are any conveniently

chosen complex polynomials in z with degrees coinciding with their

subscripts. The choice pj(z) - zj would be permissible.) If it

seemed worthwhile to do so, then for a curve C of a given shape it

would certainly be feasible to calculate the maximizing points for

some of the lower values of n and put them in a library ready to use

for any boundary data u which might be presented. If this is all that

is done, then the interpolation polynomial of degree n would have to

be determined for each new boundary function by solving a certain set

of linear equations in 2n + 1 unknowns for the coefficients of the

polynomial. But in Section 2 a formula is derived for the interpola-

tion polynomial of degree n which expresses it as a linear combination

of certain harmonic polynomials, there denoted by Bk(z), k = i, too#

2n + 1, which do not depend on the boundary data. The coefficients

in the linear combination are merely the values of the boundary data
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at the chosen 2n +1 points on C. It would be possible to calculate

the harmonic polynomials Bk(z) once and for all, after the points of

interpolation on C have been chosen, and to put them in the library

along with the interpolation points. One would then have an exceedingly

simple and rapid method of finding an analytic approximation to the

solution of any Dirichlet problem that might be presented for that

particular region.

2. The structure of harmonic interpolation polynomials. A harmonic

polynomial of degree n is an expression of the form

h(n) - oe0  Z (o< rj cos jO + r sin je),

z - r(cos 8 + i sin 8),

where o<0Po l' 0'" Or) elf 00)F are real, oc n and en are

not both zero, and i is the imaginary unit. This can be written as

n (
(2.1) h(z) = a 0 Z (a° Z, + ' iV),

j=l

where a c f a j (Ox - if )/2, J = 1, ..., n, and the bar

denotes conjugate complex. The right side of (2.1) is the real part

of a polynomial in z of degree n with coefficients ao, 2al, ... , 2an

It is also the imaginary part of a polynomial in z of degree n with

coefficients ia0, 2ial, ..., 2ia. Thus every harmonic polynomial is

the real part of a polynomial in z and also the imaginary part of a

polynomial in z. Conversely, the real and imaginary parts of any

polynomial in z are harmonic polynomials.

The real part of a polynomial in z is at the same time the real part

of a related polynomial in z. The coefficients of the latter polynomial

are the complex conjugates of the coefficients of the former polynomial.

From this it follows that the real part (and also the imaginary part) of
2 - -2

any finite linear combination of the monomials 1, z, z , ... , z, z ,.

with complex coefficients is also a harmonic polynomial.
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Theorem 2.1 . If a finite linear combination of the monomials 1, z,
- -2

, ... , z, u , ... vanishes for all z on the boundary of a bounded

region D, then the coefficients are all zero.

For the proof, suppose first that the linear combination is a

harmonic polynomial h(z), and let it be written out in the form (2.1).

By the maximum principle for harmonic functions [i, p. 179] h(z) must

vanish identically on the region D. Therefore the complex polynomial in

z of which h(z) is the real part must reduce to zero or to a pure

imaginary constant [I, 1. 691. This implies in turn that all the coef-

ficients in (2.1) must be zeros.

More generally, let the linear combination be

n n

Za z j  + X b
jmO j-l

where of course some of the coefficients may be zero and a now is not

necessarily real. Then*
n n

(2.2) 9 L . t Z a zi + zj •

o 1

Since L and therefore RL vanishes on the boundary of D, the polynomial

in z in the square brackets in (2.2) reduces to a pure-imaginary constant,

and aj + - 0, J 1, ... , n. Therefore

n
This expression is the imaginary part of the polynomial i 4 + Z 2aj sj

multiplied by i, so it is a harmonic polynomial multiplied 1

by i, and since it vanishes on the boundary of D, all of its coefficients

must be zero. This completes the proof of Theorem 2.1 .

If pl(z), p2 (z), see# pn(z) are complex polynomials in z of

respective degrees 1, 2, ... , n, then the expression
n

b + JZ (b i Pj(z) + b Pj(z) with b0 real is also a harmonic

polynomial of degree n. With a rearrangement of terms it can be put

into the form of h(z) above.

* The symbol R means "real. part of".
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If such a polynomial assumes given values u1, u2 0 *..., u2n+

respectively at points zl, s2, *. 52nl' then the coefficients

b0 , b1 , ae., b n, *' ""S n are a solution of the 2n+l linear

algebraic equations
n

b0  + Z (b4 pj(h) + 1j 3 * Uh, h - 1, 2, s.., 2n+l*

We shall now examine the existence and uniqueness of the solutions of

such sets of equations.

Given the system of linear algebraic equations
n

P(zh) - Co + Z(c- jZh) + dj pj ] " uh h 0 ~Jul i ih J hu

h - 1, 2, ... , 2n+l,

where the numbers uh are regarded as given complex numbers and the

letters c and di stand for unknowns, a sufficient condition for the

existence of a unique solution is the non-singularity of the matrix

1 pj(z 1) ... Pn(,l )  ... z

(2.3) A "

L Pl(Z2n+l) ... Pn(Z~n
2n+l) n~) .. Pn(z2n+l)

which is equivalent to the nonr-vanishing of' the determinant det A. Now

A can be transformed by elementary column transformations into a certain

matrix A which is the specialization of A in which pj(z) is replaced by zi.

A necessary and sufficient condition for the singularity of A0 , and

therefore for that of A, is that there exists some linear combination of

the monomials 1, z, ..., zn , in , with coefficients not all zero,

which vanishes in all of the points zl, 1 .) . z2n+l. The real part of

such a linear combination is a harmonic polynomial of degree not greater

than n. Conversely any harmonic polynomial of degree not greater than n

is such a linear combination. The upshot of this is that the necessary

and sufficient condition for the non-vanishing of det A is that the points

zl 000, Z2n+l shall not all lie on an algebraic curve given by an

equation of the type H(z) - 0, where H is a harmonic polynomial of degree

n or less. We henceforth proceed under the assumption that this non-
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singularity condition is fulfilled. In specific instances it, validity

must be checked. It is an implication of the condition that the points

l e..., z2n+l must all be distinct, for if they were not, the rank of

A would of course be less than 2n +1 and the columns would be linearly

independent. We call the condition n-s for short ("n-s" for "non-

singularity" ).

Suppose that in the system of equations P(zh) -u h  discussed

above, the numbers uh are all real. Then P(zh) - PC Y, h a 1, ... ,

2n + 1, which means that the coefficients c and d satisfy the equations
n

- c0  + z [(ca - (z) P() + (dj-'c) hh h -19 one
J-1

2n +1. Condition n-s now implies that c 0 -C cj - d J - 1, .. , np so

n
P(z) is necessarily of the form B(z) - b0 + Z (bj (z) + b ( ),

b real. We formalize this irk a theorem:
0

Theorem 2.2 . Given complex polynomials p,(z), p2 (z), no' pn(z) in

z of respective degrees 1, 2, ... , n; real numbers u1 , u2 , 0..,

U2n+l; and complex numbers z1, z2 , ..., 2n+l satisfyinE the n-s

condition; there exists a unique linear combination of the polynomials
n

p (z) of the form c0 +I (c p (z) + dj -PJ--z) which assumes the value

in the Point zh, h 1 1, ... , 2n+l. Furthermore d = cis so this

is a harmonic polynomial B(z) of degree at most no

1horem 2.3 . In Theorem 2.2 if the numbers Ul, u, ..., u2nl are the

respective values assumed in the points zl, ... z2n+l , by a harmonicn ~ j

poly h() - c + n (c zj + c s) of degree at most n, then

p(z)oh(z).

The proof consists in first putting B(z) in the form
n

a + Z (aj z J + a i1 ) and then using the non-singularity of A to show
10

that all the coefficients of B(z) - h(z) must vanish. The theorem

implies that there is essentially one and only one harmonic interpolation

polynomial B(z) under the hypotheses of Theorem 2.2 regardless of the

choice of the base polynomials pj.
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Consider now the matrix A in (2.3) and modify it by replacing the

k-th row-vector with the row-vector - (1, pl(z), ..., pn(z), p71 , ... ,

p ). Let A (z) denote the new matrix so obtained. The quotient

Bk(s) - det Ak(s) / det A is clearly a linear combination of the elements

of f which vanishes for 1 - z 1 2 ..., Sk-' Zk+l, '... Z2n+l and

equals one for s - zk* Therefore by Theorems 2.2 and 2.3 it is the

unique harmonic polynomial of degree at most n which behaves in this way.

It follows that given any real numbers u1 , u2 , ... , U2n+1  and any set of

n complex polynomials in z in which one of each degree from 1 to n is

present, the unique harmonic polynomial of degree at most n which asaumeo

these values in points z1, ..., S2n+l satisfying the n-s condition can

be represented by the formula

2n+l 2n+l det A k(z)
(24) H n(Z) Z Z uk Bk(Z) - z uk  det A

k-.1 k,-1

If we write
n

B+ Z b pj(Z) + pj ]

then bko is the cofactor of the first element in the k-th row of Ak(s)

(or A) divided by det A, bkj, j - i, 2, ... , n, is the cofactor of

p() in A (z) divided by det A, and 9- j a I, 2, ... , n, is the
k __ kj'

cofactor of p(z7 divided by det A. These cofactors divided by det A

form the k-th column of the matrix A- 1 , so if we denote this column-

vector by [A7 1 k, we can write Bk(Z) - -.[A7Ik . Thus we get the

compact formula
2n+l

Hn(z) E -L1P[A- 1 k 0 A71 us
k-I

where 0 is the column-vector with elements u1 , u2, .. , U2n+l

We conclude with a result which is basic to certain convergence

theorems in the next section.

Theorem 2.4 . Given any bounded region D, for each n, n - 1, 2, ... ,

there alwas exists at least one set of 2n + 1 points on the boundary of

D which satisfies the n-s condition.
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The statement is equivalent to saying that given any bounded region

D, points Zi, ... , S2n+l always exist on the boundary such that the

matrix A in which the k-th row is (i, zk, ... Zkn, zk .

k a 1, .*, 2n+l, is non-singular. We use what is known in linear

computation theory as an "escalator method" to establish this.

Consider first the upper left-hand (n + l)-rowed principal minor

of A0, which we denote by V. This is merely a Vandermonde matrix and is

non-singular whenever the points zl, ... , 5n+l are distinct, as may be

shown in various ways - for example, by direct evaluation of the determinant.

We choose any set of distinct points on the boundary of D as our points

l .. , Zn+ I and pass to the consideration of the minor

i -Z

V1 (Zn+2) n+1

I n+2  n+2 n+2

The determinant of this minor, considered as a function of zn+2, is an -

linear combination of the monomials 1, Z 2 , . Z.*of Zu12,  in which

the coefficients are the cofactors of the elements in the last row. If

for all zn+2 on the boundary of D this determinant were to vanish

identically, then by 2.1 the coefficients would all have to be

zero. But the coefficient of zn+2 is not zero; it is det V. Therefore

there must exist locations for Zn+2 on the boundary of D such that

det V (Z n+2  0. We choose one such, and pass to the next principal

minor of A say V2 (z n+3). The determinant of this is a linear combination
o 9zn - -2 -

of i, 6n+3 . n+3 Z n+3- zn+ 3  The coefficient of -2 isn+3 1+9 Z~ 1n+ 3 i

det V1(zn+2), and since this is not zero, there must be a way of

choosing zn+3 on the boundary of D so that det V2 ( n 3 ) 0. And so

on; induction completes the proof.

Theorem 2.h can also be derived from a more general result outlined

in [7, pp. 487-488]. This is to the effect that if ul, u2 , ... , un are

linearly independent real-valued functions, and if for any n points on an
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arc o< it is always possible to pass a "curve" with equation alul(z) +

0.. + an un(z) a 0 through the points, then oK must coincide with such

a curve. In our case, if no set of 2n + 1 points satisfying the n-s

condition were to exist on the boundary of D, then each such point set

must lie on a locus H(z) - 0, where H is a harmonic polynomial of

degree at most n with coefficients not all zero. But then according to

the above result the boundary of D would have to coincide with such a

curve, and this would be impossible by the maximum principle for harmonic

functions.

3. Convergence theorems for sequences of harmonic interpolation

polynomials. Let D be an arbitrary bounded region and let C be its

boundary. Consider the following infinite sequence of point sets lying

on C:

S1  " IZll , z 12 , Z13}

S2 " (Z21) Z2 2 , Z23' '24' z25

S = I Zn,2n+l}
n ni' Zn29 ".. z

We assume throughout this section that for each n, Sn satisfies the n-e

condition of Section 2. Let Bnk (z), km 1, ..., 2n t-1, denote for

each k the (unique) harmonic polynomial of degree at most n which vanishes

at all points"of Sn except the point znk' at which it equals one. For

any function u given on C, we construct the harmonic polynomial of degree

at most n found by interpolation to u at the points Sn; written in the

form (2.4) this polynomial is

2n+l
(3.1) Hn(u; z) - Z U(Znk) Bnk(z).

kal

The method used in this section to study the convergence properties

of the sequence HI, H2 , ..., consists in referring them to the

properties of other sorts of harmonic polynomial approximations to u.

We recall that if h is any harmonic polynomial of degree not more than

n, then by Theorem 2.3,

2n+l
H (h; z) Z h(znk) Bnk(z) . h(z).

k-I
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Suppose now that at least for a particular u it is possible to solve the

Dirichlet Problem for u and Di let U denote the solution. For any z

in tho finite plane for which U exists,

2n+l

Hn(U; z) - U(z) - [u(znk) - h(z nk)] B nk(z) + h(z) - U(z).
k-1

2n+l
Now let Tn (z) - Z IBnk(9)1. By the maximum principle for harmonic

k-1

functions,

Ih(z) U(z)j f:up u(z) - h(z)l, z eD + C.{h(, - ~z){_< ec

This with (3.1) implies that

(3.2) Hn(u; Z) - U(z) < Iup u(z) - h(z)I][l + Tn(z)], z e D + C.

We base our convergence theorems all on this inequality. In the

language of linear operator theory, the function Tn (z) is the total

variation of the kernel of Hn, regarded as a linear operator *; or again,

it is the norm of the functional H on the space of functions u. Clearlyn

it must play a key role in the convergence theory.

In what follows we shall have frequent occasion to make use of the

"o" and "CF' notation when comparing orders of magnitudes of functions

defined on the positive real integers. The reader will doubtless recall

that the notation a(z, n) - o(b(n)) means that rmoo a(z, n)/b(n) - O.

Also, a(z, n) - O(b(n)) means that a constant M exists which is independent

of n such that a(z, n) < M b(n) for all n sufficient]y large. A

uniformity condition with respect to z on a set Z means that the limit

in the 'o" case is uniform with respect to z and the M in the "ON case

is independent of z for z on Z.

Theorem 3.1. let C be a Jordan curve , let u be continuous on C, and let

T(Z) - 0(l) uniformly on the subset Y of D+ C. Then i Hn(u; z) - U(z)

* For a further development of this point of view, see [4]. The comparison
technique in (3.2) is a familiar one in the theory of interpolation; for

example see [12, Chapter XIV], [6, Chapter IV].

A Jordan curve (or simple closed curve) is homeomorphic to a circle.



- 13 -

uniformly on * If Tn (z) is unbounded at any point zo. then there

exists a continuous function u for which (Hn(u; zo)) is unbounded.

The theorem was first announced in [4). The convergence statement

follows from (3.2) and a theorem of Walsh [17, p. 169] to the effect that

given any continuous function u on a Jordan curve, there exists a sequence

of harmonic polynomials h1(z), h2 (z), ... of respective degrees not

greater than n which converges to u uniformly on C. The last sentence

follows from linear operator theory; see [4].

Corollary. If IBnk(Z)l - 0(1/n), k - 1, ... , 2n+ 1, uniformly in

k and uniformly for z on any closed subset of the Jordan region D, and

if u is continuous on C, then lio H(u; z) exists uniformly for z

on any closed subset of D and provides there the solution of the

Dirichlet Problem for u and D.

The hypothesis of course implies that Tn (z) is uniformly bounded

on any closed subset of D. We have stated the corollary formally

because a study of various special cases, such as the ones discussed in

Section 4 below, seers to indicate that on any sufficiently smooth

Jordan curve there always exists a sequence of point sets SI, S2 , ...

such that the condition on Bnk in the hypothesis of the corollary is

satisfied.

It is to be noted that wder the hypotheses of Theorem 3.1, the

degree of convergence to u on D of any comparison sequence hi(z) ,

h2(z) , ... is duly reproduced by HI(u; z), H2 (u; z), ... on

For example, if a sequence h1(z), h2(z), ... exists such that

u(z) - hn(Z) - 0(n-q), q > 0, uniformly on C, then Hn(u; z) - U(z) = O(n-q )

uniformly on / . It is known [3], [19], that if C is analytic* and if u

has a k-th derivative u(k ) with respect to arc length on C which satisfies

the following condition (called a Lipschitz condition of order o):

* For any Jordan curve C there exist parametric representations of the
form z - f1(0) + i f2(0), where f1 and f2 are real continuous functions
of period 2t, and where any two solutions @ of the equation
for a given z on C differ by an integral multiple of 9. A Jordan curve
is said to be analytic is there exists such a parametric representation
in which fl and f2 are analytic functions of 9 and I1l(9)I ' jf2(@)1 a O.



lu()() - u(k)(2) -.Xzj- Z21 N> O,

0 < oC< 1, all zI and z2 on C,

then there exist harmonic polynomials exhibiting the degree of convergence

(n- k- ° < ) .

The problem of finding point sets Sn on a general Jordan curve such

that T (z) is uniformly bounded for z inside the curve remains open as

this is being written, but it is easy to show that there exist sets S
nnfor which the sequence (Tn (z)) increases no more rapidly than does

2n+1 for z on D+ C. We now do this.

Theorem 3.2 . Let F be any closed bounded point set with the property

that for each n a subset of 2n+ 1 points satisfying the n-s condition

exists. Then there exists a sequence of subsets of F, SI, S2 , ... P

each satisfying the n-s condition, such that when Tn (z) is constructed

for the n-th subset, Tn(z) < 2n+1, n - 1, 2, ... Z z ).

For the proof, consider the matrix A appearing in (2.3) with

zlIt,"' . 2n+l on r. (The polynomials pI, ..., p n in A may be

chosen arbitrarily in what follows, except that as usual their degrees

must agree with their subscripts.) Now Idet Al is a continuous function

of the 2n+ 1 independent variables zl, ... , Z2n+l, and its domain

r is a compact set. Therefore the function has a maximum on this set.

The maximum cannot be zero, because the n-s condition in the Lemma is

equivalent to stating that det A 1 0 for at least one S . Let S*

be any one of the sets Sn which maximize Idet AI and denote the corres-

ponding matrix by A*. Consider now the matrix Ak(z) obtained from A*

by replacing the k-th row-vector with (1, pl(z), ... , pn(z), pl-, ... ,

n--Y). Because of the maximizing property of S*, it must be true that
d fo( in ute de tion

Idet A*(z)l_ Idet A*j for all z on * Let Bk(z) in the definition

of T (z) be specialized to (det Ak(z))/(det A*). Then IBnk(Z) _ 1

n k zt

for all z on Fand the inequality in the Theorem follows from this.
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The reasoning above is reminiscent of studies of interpolation

points with extremal properties which have been made by Fekete, Leja,

Shen, and others in connection with complex polynomial interpolation;

see (17, 65 7.7-7.8].

Obviously the points S* satisfy the n-s condition and are distinct.
n

From Theorem 2.4 it can be seen that at least whenever r contains

the boi iry of a bounded region, the hypotheses of Theorem 3.2 on U
will be fulfilled.

Theorem 3.3 • Let D be a bounded simply connected region for which the

Dirichlet Problem can be solved, at least for a certain function u

continuous of the boundary C of D. If there exist harmonic polynomials

h1 (z), h2(z), ... of respective degrees no greater than 1, 2, ... p

such that u(z) - hn (z) - o(l/n) uniformly on C, then there exists a

sequence of point sets SI, $2 ... on C such that n Hn(u; z)

exists uniformly on D+ C and provides the solution of the Dirichlet

Problem for u and D.

Theorem 2.4 guarantees that the boundary C in this theorem satisfies

the hypotheses imposed on P in Theorem 3.2, so there exists a certain

sequence of subsets of C, say Sl, S2, ..., such that Tn (z) <2n+,

z e D +C when T (z) is constructed for S*. Substituting this
n n

inequality into (3.2), we obtain

(3.3) lH(u; z) - U(z)j ~sup lU(z)- hn(z)I (2n + 2), z a D+C,

from which the conclusion of Theorem 3.3 follows at once.

The polynomials H n(u; z) here interpolate to the boundary data u

in the special points S* which maximize Idet Al. For a brief
n

discussion of computational aspects we refer the reader to the last

paragraph of the Intryduction, Section 1 above.

Under what conditions on D+ C and on the boundary data u do

harmonic polynomials hn(z) exhibiting the degree of convergence o(1/n)

exist? We have indicated above that if C is an analytic Jordan curve

and if the first derivative of u on C satisfies a Lipschitz condition of

order o<, then the desired harmonic approximation is available. It is

possible however to relax the requirement of analyticity. by reference
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to some work of Sewell [iO][il] we shall now prove that the Dirichlet

Problem can be solved by harmonic polynomial interpolation for a rather

wide class of Jordan regions when the boundary data belong to a Lipschitz

class.

Let C be a Jordan curve and let K be the region of the extended

plane exterior to C. We consider a conformal mapping of K onto a region

in another complex plane, which we call the w-plane. There exists a

function z - 4(w), analytic and univalent on 1wI > 1, which maps

lw > 1 conformally onto K so that the point at infinity in the w-plane

goes into the point at infinity in the z-plane. By the Osgood-Caratheodory

Theorem [2, p. 861 this function can be extended continuously onto

1wl - 1 so that it gives a topological mapping of lw - 1 onto C.

Definition. The curve C is of Type W provided that (w) 0 on

lvw - 1 and " is continuous on 1w! - 1.

The primes indicate differentiation. Here and in what follows, the

derivative of a function f given on a Jordan curve C means the derivative

in a one-dimensional sense with respect to z on C:

f(z) - f(Z(k) df(k-l1df- f(Z lim z f()) -

Z-Z 1  ZM 'lS

k 2, 3, z, z 1 C.

Theorem 3.4 . Let D be a region of which the boundary is a Jordan curve

C of Type W. Let u and its first derivative u' be continuous on C and

let u' satisfy a Lipschitz condition:

1u'(z 1 ) - u'(z 2 ) 1 < X Jzi - z2 I

A >O, all z and z2 on C,

of some order o<, 0 < oc < 1. Then there exists a sequence of point sets
S1 ... , on C such that 1i~o H (u; z) exists uniformly on D +C

and provides the solution of the Dirichlet Problem for u and D.

It is the plan of the proof to show that under the hypotheses of the

theorem there exist harmonic polynomials h2(z), h3 (z), ... , of respective
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degrees at most 2, 3, ... such that

(3.h) u(z) - h(z) - O[( lo_ .n )o+l ],

uniformly for z on C. Now

lo n )o<+ 1 _n (log n) O K+  . 1(I) p
n

so if we can obtain (3.)O, then the hypotheses oC Theorem 3.3 will be

satisfied. Theorem 3.4 will then be an immediate consequence of
Theorem 3.3.

The theorem of Sewell [11] whi.h we need is the following:

Let the point set F consist of a finite number of bounded closed

regions bounded by the set of mutually exterior Jordan curves C1, C29

0..o C each of 'yIpe W. For each j, j 1, ... , m, let the function

f be analytic interior to C j, be continuous in the corresponding

closed region, and possess on C a continuous k-th derivative which

satisfies a Lipschitz condition with exponent o'Z, 0 < o< < 1. Then

for each integer n, n > 2, there exists a complexpolynomial P (z)

of degree at most n in z, such that

(3.5) f(z) -Pn(z) - O[ ( log n )oe-+k

n

uniformly for z on r .

In the present application, we use the case in which m - 1,

k -1, oe < 1.

We need the following facts concerning C, which are implied by the

definition of Type W:

The curve C has a tangent at each point. If f(s) denotes the

tangent angle with the positive real axis, expressed as a function of

arc length s on C, then r(s) satisfies a Lipschitz condition with

exponent unity uniformly in s. (See [11] for further explanation.) Let

z - O(w) be analytic and univalent for Iwj < 1 and map Iwj < 1

conformally onto D; further let z - O(w) be extended continuously

onto Iwi - 1. Then z - (e 8), 0 < e < 2-f, is a parametric equation

ror C. Fila1i7 let w = X(z) be the inverse of z - O(w). By a
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theorem of Kellogg [8][5, pp. 34-35J the Lipschitz condition on -rs)

implies that '(w) and -.'(z) exist, and that for each o(, 0 < o( < 1,

0'(w) satisfies a Lipschitz condition in w on lwI - I with exponent (,

and -X'(z) satisfies a Lipschitz condition in z on C with exponent o<.

In particular, $' is continuous on Iwi - 1 and Xt is continuous on

C. From the continuity of the derivatives it follows that positive

constants a and b exist such that

( (w ) - 4(w2)
(3.6) v1 -v 2  < a, all Iwll - 1 w21 - ,

(3.7) (Z z2 < b, all zl, 2 C.

(The existence of such bounds is easily proved by an indirect argument.

For a detailed direct proof which goes into the structure of the bounds,

see (19, pp. 385-386].)

We return now to the function u of Theorem 3.4. The mapping

z - O(w) carries u(z), z on C, into u(O(w)) - v(w), lwi 1. Now

v'(v) du du dz u'(z) '(w), IWIv'(w) - -=r Tw • u wl-I

and

v'(w ) - v'(w2) - (U'(Zl) - U'(z2)) O'(wl) + u'(12)($'(wl) - 4'(w2))"

z I *(w1 ), z2 - O(w2 ), z1, z2  e C.

Let M1 be arn upper bound for I '(w)tI, IwI - 1, and let M2 be an upper

bound for the modulus of the continuous function u' on C. Also let 1I
be the constant in the Lipschitz condition satisfied by 4'(w) on lwi - 1.

Then we obtain:

(3.8) Iv'(wl)- v'(w 2)I < X Il z2I' l XI w w

XM *(wl) - O(w2) 1o<
w1 w2  l-v2 I1+ )' I2 7 W2 I'

..< (* a° * A) Iwl - w2 1< o" ) <1
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(For the last inequality we used (3.6).) Thus v'(w) satisfies a

Lipschitz condition of order o< on iwI - 1.

A theorem of Walsh, Sewell, and Elliott [19, p. 388], based on work

of Privalov (20, vol. I, pp. 121-122] on conjugate functions, now

guarantees the existence of a function g analytic in the complex variable
w for lwI < 1, continuous on twI < 1, and with the properties that

its real part coincides on Iwf - 1 with v and also that its derivative

g' satisfies a Lipschitz condition of order oe on lwI - 1. The mapping

w k X(z) carries g(w) into g(x(z)) - f(z) which is analytic for s

on D and continuous on D+C. Also, 'R f(z) - u(z), z on C. The

derivative f' exists at each point of C, because

f() f(z 1) g(w) g(w) X(s)-) 1

z -- Z1  1z -A. z1iL W

- g'(w1 ) )c.'(z 1 )

w -X (), wI - .x(zI),  , z 1 e C.

Finally, as in (3.8),

If,1) - f'(z 2 )I - (g'(w 1) g'(w)) x'(z1 ) + g' _)(-X(z .X'(z

_<>'2M3 1w, - w2 1°" + -X4M4 IzI z 2 I'<

- (L2M 3 b< + XjIM)IZ1 - z21  ,

w - x(-Z, w2 - X( 2 ), 1w - Iw2 1- l,

where A2 and X 4  are the Lipschitz constants of g' and -X2 respectively,

M3 and 4 are upper bounds for -' and Ig'I respectively, and b is the

bound which appears in (3.7).

This function f therefore satisfies the condition of Sewell's theorem

with m - 1, k - 1, o( < 1. Therefore there exists a sequence of complex

polynomials in z which satisfy (3.5). Let hn(z) in (3.4) be RPn(z)

in (3,5). We have, since u - Rf,

lu(z) - hn (Z) I < If(z) - Pn(Z)I,
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and the existence of the required harmonic polynomial approximation to u

follows from this inequality. This concludes the proof of Theorem 394.

The generality of the point set r, in Sewell's result and in our

Theorem 3.2 suggests that Theorems 3.3 and 3.4 remain true if D is replaced

by a point set consisting of a finite number of mutually exterior bounded

regions, D1 , D2 , ... , Di., with functions ul, u2 , **, um  given

respectively on their boundaries. (In the case of Theorem 3.4, the region

Dk would be bounded by curves of Type W.) This is in fact true. The

limit of the sequence of harmonic interpolation polynomials then simul-

taneously provides the solution of the Dirichlet Problems for D and u1

with z on DI, D2 and u2 with z on D2 , and so on.

The result of Sewell used to establish (3.4) and thereby Theorem 3.4

seems to be nearly the best possible, in the sense that under the stated

conditions on the approximated function f, the conditions on the curve C

are nearly minimal for achieving the exhibited degree of approximation.*

However, the hypotheses of Theorems 3.3 and 3.4 are strong enough to

guarantee convergence on the boundary C as well as on D, and it was pointed

out in the Introduction that because of this, in a sense these theorems

overshoot the goal of the general convergence theory. We here amplify

the remarks in the Introduction concerning the extra difficulties on the

boundary.

Consider the case in which C is the unit circle. A glance at the

first formula in Section 2 above will reveal that in that case, harmonic

polynomial interpolation on C reduces to interpolation with trigonometric

sums. In this case it is known [20, vol. II, p. 37], [6, p. 1201 that a

sequence of sets SI, S ... exists such that T (z) (log n), Izi 1,

which is much more favorable to convergence than the O(n) given to us by

Theorem 3.2. The points in S* are equally spaced on IzI - 1. But to
n

obtain convergence, additional smoothness conditions are needed for the

* Mergelyan [9, p. 841, using hypotheses on C which differ slightly from
those of Sewell, arrives at a slightly weaker degree of convergence, and
shows that his result is the best possible for the class of functions f
and class of curves which he considers.
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boundary values beyond mere continuity, for it is also known [20, vol. II#

pp. tli ff.] that if the point z - 1 belongs to each S*then there

exists a function u continuous on IzI - 1 such that (H n(u; z)} diverges

for all z 9 1, where H (u; z) is found by interpolation to u in S*on no
Por such a function u the Fourier series may converge uniformly (20, vol. II,

p. h7], although (speaking qualitatively) the partial sums of the Fourier

series generally do not give a particularly good trigonometric polynomial

approximation to a merely continuous function. We shall show in the next

section that for any continuous u, the above sequence (H (u; z)) doesn

converge on jz, < 1, no matter how badly it behaves on jzj - 1.

In defense of Theorems 3.3 and 3.4 it might be said that there are

occasions in practice when it is of interest to know that an approximation

to the solution of the Dirichlet Problem can be trusted on the boundary.

In the discussion immediately above it was brought out that even with

the smoothest conceivable C (a circle) some smoothness conditions are

still needed on u beyond continuity to guarantee convergence on the boundary.

It is of some theoretical interest to note that Jf we are willing to

consider the smoothest conceivable u, then C can be an entirely arbitrary

Jordan curve and convergence will take place on C. We now express this

result formally. The mapping function 0 which appears in the statement

is the one used above to define curves of Type W.

Theorem 3.5 • let D be a region bounded by an arbitrary Jordan curve C.

et the function U be harmonic on the closed set D + C. let CR denote

the image in the z-plane of the circle !wI - R > 1 under the conformal

map given by z - 0 (w). Then (a) there exists a largest value of R,

say 7_ ® , such that U with its possible harmonic extensions is single-

valued and harmonic at every point interior to Cp ; (b) there exists a

sequence of point sets Sl, S2, ... on C such that for an R, I < R <

linkSp [ ZaX IU(z) - H(U; z)11/n) < l/R,
InRF z e D*Cn

where H is the harmonic polynomial of degree at most n found by interpola-
- n

tion to U in the points Sn •

In other terms, the degree of convergence of the sequcnce of harmonic

interpolation polynomials on D+C is O(/ftn), for any R, 1 - R < -.
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Statement (a) in the conclusion of the theorem is a consequence of

the monotonic character of the level curves CR. For details the reader

is referred to [17, chap. IV].

For statement (b), we make use of a theorem of Walsh [14[16] which

states that there exists a sequence of harmonic polynomials hl, h2 , ... ,

hn, ... , of respective degrees at most 1, 2, ... , n, ... , such that

(3.9) IU(z) - hn(z)J _<M

for z on C and for any R, 0 < R < where M is independent of z.

We let S be the point set S* referred to in Theorem 3.2. Substituting
n n

into (3.2) we obtain

IHn(u; z) - U(z)I (2n + 2) z e D+C.
R

Taking the n-th root of both sides and then passing to the limit, we

obtain the conclusion of Theorem 3.5, since 1m [(2n + 2)M]l/n - 1.

Walsh's harmonic approximation result embodied in (3.9) is valid

when D+ C is replaced by any closed bounded point set U whose complement

is connected and regular in the sense that it possesses a Green's function

with pole at infinity. For details see [16) and [17, chap. 4]. Theorem

3.5 can be generalized correspondingly, provided that a hypothesis is

inserted to the effect that for each n, P has a subset S satisfyingn
the n-s condition.

By using interpolation techniques, Shen [17, pp. 173-17h] constructed

a proof of the existence of sequences of complex polynomials converging

maximally (the terminology is that of Walsh) to a given complex function

f analytic on a general closed bounded point set whose complement is

connected and regular. Shen's polynomials were defined by interpolation

to f in points with extremal properties similar to the extremal properties

considered in Theorem 3.2 above. It would be of interest to see if with

the aid of Theorem 3.? an analogous existence proof could be given for

harmonic polynomials and harmoric functions. Theorem 3.5 and the other

theorems of this section of course are not existence theorems in the

basic sense since they presuppose the existence of some sort of harmonic

polynomial. approximations.
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4, Harmonic polynomial interpolation in transforms of the roots of

uLity. We now consider the following infinite qequence of point sets

yving on a Jordan curve C in the z--plane:

S2  n 1 ) ), Ij (W~) 2 1 w) i(w) )()

s 4(w2 1 ) (3 2 (w2 ) (11

0 n2n+1 (2n+l)n

!here W2n+l  e2 i/(2n I ) and z - (w) is the mapping function which

i introduced in Section 3 to define curves of Type W. (That is, J is

ialytic and univalent on Iwi > 1, continuous on wi > 1, and maps

I > 1 onto the region exterior to C so that the points at infinity

,rrespond.) It is known that this sequence of interpolation points is

fundamental importance in complex polynomial interpolation to boundary

• E's (see [4]), so it is natural to study it in connection with

rmoic polynomial interpolation.

Let u be a continuous function on C. We choose an infinite sequence
....e polynomials . of respective degrees 1, 2, oe.,

; we assume that S2n+l satisfies the n-s condition of Section 2,

we set up the harmonic interpolation polynomial in the form (2.4) or

2n+l
);.) Hn(u; z) z u[ 1 (w 2  l ]Bk(z),

k-l

Ill) B(z)- (n) n (n~b) (z) + F(n) ~x
nk ko J.l j kj

b(n) n b(n)Mbko + P,2 1 bkJ pj(z).

j=l k

!-,notion Bnk is the unique harmonic polynomial of degree at most n

rarishes at all points of S except t (w k where it equals unity.
n 2n+l

"w above representations of H and B are not quite as general as
n nk

Kfrht be, in that it would be theoretically possible to choose a new
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set of base polynomials pj each time n is changed. We might then use the

notation Pnf Pn2f *"' Pnn for the n-th set. This generality is not

needed in what follows.

We shall now calculate Hn(u; z) explicitly for the special cases

in which C is a circle and C is an ellipse.

For the circle Izi - R, the mapping function becomes z - (w) a R,.

We choose as the base polynomials p1  z/R, P2 - z 2 /R 2 **) nn * .

The coefficients of B nk(z) are the solution of the following system of

linear equations in the unknowns b ( b kJn) .
kj 3' kj 3

n n
(4.3) ba JI J-1 2n+l 2n1 k,

h - 1, 2, ... , 2n+l,

where 6hk * O, h # k, 5kk - 1. The existence of a unique solution to

(4.3) will be a by-product of our method of finding the solution. We

shall need the following easily proved facts about the (2n + l)-th roots
h

of unity, W2n+l , h n 1, 2, ... , 2n+lt

(a) w Wh n = 1, for any integers J and h.
2n+1 2+

2n+1 hj 2n+1 ;S o.j 0(md2n+1
(b) z w = z 02n+, On

hal hal 2n+ I, J 0(mod 2n+ 1).

We now transform the system (4.3) into another much simpler system

as follows. First we add all the equations together. Duly referring to

(b) above, we find that the sum equation is merely the equation

(2n+ l)b ° a 1. Then for each J, J - 1, 2, ... , n we multiply the first

equation by ;2 J the second by (;2J+)2, ... , the (2n +l)-th by

(J )2n l and add the resulting equations. We find by referring to

(a) and (b) that the sum equation reduces to (2n + l)b - 2k. Them3

same procedure with w 2n+l instead of W2n+l yields (2n+ 1)j = w Jkd w2n+le
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In matrix language, this process simply amounts to replacing the

linear system (4.3), which has a matrix we shall here denote by W, by

a new system of linear equations in which the matrix is W* W and the

right side is the k-th colum o1 W*, where W* is the conjugate transpose

of W. The matrix produce W* W is a scalar matrix with diagonal elements

all equal to 2n+ 1. The matrix (2n+ 1)-1/2W is unitary. The absolute

value of the determinant of W may be calculated as follows:

det W*W - d det W - Idet W12  ( 2n+l) 2 n+l

(4.4) Idet Wi - (2n+ 1)(2n+l)/2 . Idet W*I.

This result is of some interest in connection with the proofs of

Theorems 3.2 and 3.3, in which the determinant of the matrix for the

analogous general case is maximized.

The particular consequence of the above discussion needed here is

that W is non-singular, so (4.3) has a unique solution and it is moreover

the same as the solution to the new system having the matrix W W.

The solution of (4.3) is now obvious. Substituting into (4.2) we

obtain jn k

1 + + 2n+

Bnk(z) . J-l 2n + I

.By summing the geometric series, this can be written as

(4.5) Bk(z) I _22 ___n+2nk2 it - k  - 2 -
2 n + 1 2 nw) 2 R

h

Suppose that in (4.3) we replace w2n h, h - 1, ... , 2n+ 1 by any set
of 2n +1 points on the unit circle. The Hadamard determinant
inequality yields the middle member of (4.4) as an upper bound for

Idet WI no matter how these points are chosen. Therefore the choice of
points as the roots of unity has maximized Idet W1.
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If z lies on some closed circular disk Iz1 < I' < R, the first term

in braces is positive but less than unity and the second term approaches zero

with n at a geometric rate of convergence. Therefore B nk(z) - O(1/(2n+l))

0(1/n) uniformly in k, k - 1, ... , n, and uniformly for Iz1 <ft

It follows from the Corollary of Theorem 3.1 that with (4.5) substituted
into (4oa), l ii H(u; z) exists uniformly on Izi < < R, and

provides there a solution of the Dirichlet problem for u and the region

Izi <R.

It is easy to bypass Theorem 3.1 in the present case in demonstrating

the convergence. We write 1n (u; z) in the form

2n1 k R2 _ 2i k [z2w(4.6) ifu ) (X Wni)Y'--
k-l 2n1 - z 2

2 u(R W2n~)
k2l R-z w

2n2n +1

The first summation term is for 17 1 R a Riemann sum approximating

the Poisson integral fl, p. 180)

U(z) f, 2 u(R e i e )  R 2 2 d8,0, e'e -zI e

which represents the solution of the Dirtchlet Problem for u and the

disk IzI < R. It is an easy exercise in analysis to show that the

second summation term approaches zero for Hz < R, so again we have

lira H (u; Z) = U(z), Ijz < R.
r)- o n

This argument establishes convergence on HIz < R when u is merely

Riemiann integrable and not, necessarily continuous.

On the circLe zI - R itself, a calculation shows that

1,)(@ 2,,k
iesini(n 1 ?nk-1

(4.7) Bn(R e" ) = ,

and when this is sultit ued intlo Ifn(U; z), we obtain the trigonometric
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sum of degree at most n found by interpolation to u(R eio) in the points

Qk - 2k/(2n+ 1), k 1, ... , 2n+ 1. The identification of H n(U; z)

on the circle with a trigonometric sum was previously mentioned in

Section 3. As stated in Section 3, it is known [6, p. 120] that

ig n
T (R e ) Z IBnk(R eie)1 - O(log n).
n k-l

From (3.2) and the facts given in the discussion following Theorem 3.1

it follows that if u satisfies a Lipschitz condition of order o<, 0 < o<( 1

on Izi - R, then Hn (z) - U(z) - O(log n/n ° < ) uniformly on Izi 1< R,

so convergence takes place uniformly on the closed disk.*

We turn to the case in which C is an ellipse, which we shall call E.

If we let z a x + iy, the familiar equation (x 2/a 2 ) + (y 2/b2 ) 1,

a > b > 0, may come first to mind, but here it is more convenient to

define positive constants R and c respectively by R - V(a + b)/(a -E),

c - /a 2 - b' and write the equation of E in the form

x2  2

(.8) 2 + c2 1 1, c > 0, R > 1.

The mapping function 0 for E is given by (1, pp. 76-77]

(4.9) z - c(Rw + ), IWI>l.RW

This mapping function is analytic and univalent for 1wl > IA and

gives a conformal map of this region onto the region in the z-plane

which consists of the entire plane minus a cut on the real axis from -c

to +c. In this map, the exterior of any circle fwI - - > I1A is mapped

onto the exterior of a certain ellipse Ef in the z-plane having an

equation like (4.8), but with R replaced by fR. It is then easily seen

, The explicit formula (4.5) may have been first published only in 1960 [4.],
but both it and the convergence results noted above were certainly known
to Walsh in the late 1920's. He gave the convergence theorem to the
author as a student exercise in 1932, and in [13J and [14] he pointed out
the relation between harmonic polynomial interpolation on the circle and
trigonometric interpolation.
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that if .1, then Ef must lie invide E, and that given any point

inside E, for some - sufficiently near to 1 this point also lies inside Er.

Henceforth in the discussion we restrict w to the region jwu 1/t.

In this region the transformation (4.9) carries Rw + l/(Rw) into the

polynomial z/c and (Rw) 2 + i/(Rw)2 into the polynomial (z/c) 2 
- 2. We

shall abbreviate a statement of this type by saying, for example, that
(Rw)2 + I/Rw) 2  "is" a polynomial in z. Now if it is true that

(Rw) m + l/(Rw)m is a polynomial in z of degree m for m N - 1 and a - N,

then

(Rw)N+l+ 1 N + 1 N-i 1+ l I -() I( + )- () l
N) (Rw) (Rw)

is a polynomial in z of degree N+ 1. The hypothesis is true for N 2,0

so we have established that pm a (Rw)m + I/(Rw)m is a polynomial of degree

m in z for m * 1, 2, ....

We take the polynomials pm as our base polynomials in constructing

(4.1) and (4.2) for the ellipse. The points in Sn are of course now the

points c[w k + 1/(Fw k1), kk- l, 2, ., 2n+ 1.

The coefficients bj, Sj of Bnk(Z) are the solution of the system of

linear equations

n r bjn F)J + 1 nJ
(4.10) b 0 + b ( w 2 + 1 + F 2hl)+ R hk*

h 1 1, 2, ... , 2n+l.

To solve the system, we premultiply the matrix of the system and also the

vector on the right hand side by the matrix W* introduced above in the

circle case. This time we arrive at the following system of linear equations:

(2n + l)b = I

(2n + 1 )[Ri bj + 1 J i J 1I,2, ... , n

a 3

(2n + l)[!1 b~ + YO J j a 1, 2, *.,n,
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where CJ- w k Direct calculation shows that the determinant of the
2n+l

transformed system has the value (2n + 1)2n+l
J.l

A denotes the matrix of the original system (4.10), then det W* det A

has this value, so by (4.4),

Idet Al - (2n + 1)(2n l)/2 n (R2 J - 1 ' 0
J-l R

The value of the determinant is of some interest in connection with finding
interpolation points with extremal properties in connection with Theorems

3.2 and 3.3.

The discussion of the determinant of course implies that (4.10)

has a unique solution which can be found from the transformed system.
Accordingly we find that the solution is in part

b 
1

o 2n +1

(RM)J 1
b , J -1,..., n,

(2n +1)(R 2 j - 1

and the complex conjugates of the numbers b complete the solution.

Substituting into (4.2), we obtain

(ft )J~ 1
( i 4z ) j ) Ji

(4.1) (2n +l) B nk(z) M 1 + R2 Z 1 (Itw)J +

ft

where as above LA - v k and IwI > 1A." 2n+lan II

To study the order of magnitude of B nk(z) as n becomes infinite,

we let w - fe i', j > lift, and rewrite (4.l1) in the form

n ei J f (R2j ftJ I ) +JeiJ(l _I

(4.12) (2n+l) Bk(Z) 1 I+ R2 Z RU-
nkJ-1 2J _ I
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From this it follows that

SIR 2jfj 1 1+ I

1+ 2 S - - fj
J- 1 ft2 J 1

(ho13) JB nk(Z). 2n +_1
2n+l1

Now let z lie oh the locus Ef which is the map of twi -
where (1/R) < f < 1. It is possible to remove the absolute value

indications in (h.13), and when this is done the right side becomes

n+ (Rj - 1 RPJ+ 711 2 jl R2 ( - 1

2n + 1

nn+l

1+2 Zf : j
J-1 R J  +

2n + .

n (Rf)j  + 1

1 2 Z(R

2n +

1 . (fJ + )J-1 Rj

2n+l

The two geometric progressions in the numerator of the last member

converge, so we have shown that B (z) - 0(l/(2n+l)) - 0(1/n) uniformly
nk

for z on E . But since Bnk is a harmonic polynomial, it follows by

themaximum principle that B nk(z) - 0(1/n) uniformly for z on and
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interior to E? . It will be recalled that Ef can be adjusted so as to

contain any closed point set interior to E. Therefore according to the

Corollary of Theorem 3.1, when Hn (u; z) in (4.1) is constructed with

Bnk(z) as given by (4.11) or (4.12), PtooHn(u; z) exists uniformly

on any closed point set of the interior of the ellipse (4.8) and provides

there the solution of the Dirichlet problem for the boundary data u.

Going back to (4.12), it can be seen that if 1 1, so that z lies

on the ellipse E, then Bnk reduces to

n 2 ffk1 + 2 L cos j(@ - 2n +

J-l
B nk(z) J 2n + 1

1 2k)

sin (n + -(@ 2n +

(2n+ sin (@ 2n +1

This is the same as the formula (4.7) which we obtained in the circle case,

and once again a Lipschitz condition on u will insure convergence in the

closed region under consideration.

The identification of Hn(u; z) for z on the ellipse with trigonometric

interpolation was accomplished by Walsh [18] who then pointed out the

convergence implication under suitable smoothness conditions on u. The

present discussion eliminates any requirerment on u beyond mere continuity

for convergence interior to the ellipse.

For convenience in reference we summarize the above results formally.

Theorem 4.1 . Let C be either the circle Izi - R or the ellipse

2 2
x + 1, c >O, A > 1.

Let the function u be continuous on C. Let Hn(u; z) be the harmonic

polynomial of degree at most n which coincides with u in the points

n . (W2nkl), k 1, 2, ... , 2n+ 1, where w2 n+l is a (2n+l)-th

root of unity and gives the conformal map of jwl > 1 onto the

exterior of C so that the points at infinity correspond. The polynomial
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Hn exists and is uniquely determined. For the circle Hn(u; z) is given

by (4.6) for z not on C, and for the ellipse,

(R G )J -
n )

1+ R2 Z 2j 1(Rw) j +

2n+1 J-1 A

(4.14) Hn(u; z) - Z U(z nk) 1k=1 2n + 1

k 1W2n1 Z a C(Rw+ < {w I

In either case, lim H (u; z) exists uniformly on any closed subset of
re-io.oo n

the interior of C and provides there the solution of the Dirichlet problem

for the data u. Also in either case, for z on C and with z - 0 iei1).

H n(u z) reduces to the trigonometric sum of order at most n which

interpolates to u(q (ele)) in the points 0k 2fk/(2n+ 1), k 1 1, ... ,

2n+l. If u satisfies a Lipschitz condition of order o<, then i 0oHn(ul 2)

converges un-iformly on and inside C.

It might be of interest to devise a proof of convergence in the

ellipse case from (h.311) directly in such a way that the continuity condition

on u could be relaxed to an integrability condition of some sort.

We conclude with a technical note looking toward the generalization

of the above theorem to more or less arbitrary Jordan curves C. In

constructing H for the ellipse, we could just as well have usedn

* cJ((Rw)J + l/(Rw)J), j 1, ... , n, as our base polynomiak in z.

After cancelling a ci which would have appeared in the numerator and

denominator of each term in the summation in (4.11), the formulas (4.11),

(4.12), and (4.13) would have looked just the same as they do now. These

polynomials pj are the so-called Faber polynomials* for the region

exterior to the ellipse E. In the case of the circle Izl - R, the Faber

* See (15, pp. 32-33] for a quick summary and a number of primary references.
There appears to be a slight misprint in [15] in the recursion formula
at the bottom of page 32, where the term an should be (n +1)an .
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polynomials are z, z 2 , ... , ... , which are equivalent for present

purposes to the base polynomials which we used. Our method for finding

Hn (u; z) in each case thus consisted in expressing Bnk(z) as the real

part of a linear combination of the first n Faber polynomials, and then

adjusting the coefficients of the linear combination so that the real

part would vanish at 2n of the interpolation points and equal unity at

the remaining point. The orthogonality properties of the values of the
2 - -2

monomials 1, w, w2 , ... w,;w, ... in the roots of unity were used

in the adjustment process.

In the general case, the mapping function z - L (w) can be chosen

so as to have a Laurent development

(4.15 z - rw + a 0 W -7 + >, _, IWIz1,
w

where r is the transfinite diameter or capacity of the curve C. The

Faber polynomials Pn (z) for C are defined by stating that Pn(Z) must

be of degree n, must have unity for the coefficient of 2n, and must be

such that the Laurent development of Pn as a function of w is of the form

P (z) - (rw)n + +nl gn2 >I.n W - -7 + " '" >'1
W

In the case of the ellipse, all of the coefficients gnj vanish except

gn , and this, paved the way to obtaining a simple explicit formula for

the required linear combination of 1, P1 (z), P2 (z), *... Pn(z), il(z),

2()) , o..., fn(z). In more general cases one cannot hope to obtain

manageable explicit formulas in terms of the coefficients in (4.15), but

it may be possible to establish the asymptotic properties of B nk(z)

by using known asymptotic properties of the polynomials Pn [15, p. 33]

together with the orthogonality of the sequence twn) on the unit circle.



- 34-

Re ferences

E1] L.V. Ahlfors, Complex Analy-sis, New York, 1953.

(2) C. Caratheodory, Conformal Representation, Cambridge, 1932.

(3] J.H. Curtiss, "A note on the degree of polynomial approximation"",
Bull. Amer. Math. Soc., vol. 42 (1936) pp. 873-878.

(4] J.H. Curtiss, "Interpolation with harmonic and complex polynomials to
boundary values", Journal of Math. and Mechanics, vol. 9 (1960)
pp. 167-192.

[5) C. Gattegno and A. Ostrowski, Representation conforme a la frontierej
domaines particuliers, Mmorial des Sciences Mathmatiques, fascicule
cx, Paris, 1949.

(6] D. Jackson, The Theory of Approximation, Amer. Math. Soc. Colloquium
Publications, vol. 11, New York, 1930.

(7] L.V. Kantorovich and V.I. Krylov, Approximate Methods of Higher
Analysis, translated by C.D. Benster, New York and Groningen, 1958.

[8] O.D. Kellogg, "Harmonic functions and Green's integral", Trans* Amer.
Math. Soc., vol. 13 (1912) pp. 10-132o

(9) S.N. Mergelyan, "Uniform approximations to functions of a complex
variable", Uspehi Nat. Nauk (N.S.) vol. 7 (1952) pp. 31-122. Amer.
Math. Soc. Translations No. 101 (1954).

[10] W.E. Sewell, "Dpgree of approximation by polynomials - Problem o(",
Proc. Nat. Acad. of Sciences, vol. 23 (1937) pp. 491-193.

(11] W.E. Sewell, "Degree of approximation to a continuous function on a
non-analytic curve", Proc. Nat. Acad, of Sciences, vol. 47 (1961)
pp. 195-202.

[12] G. Szegi, Orthogonal Polynomials, Amer. Math. Soc. Colloquium
Publications, o New Yok 1939.

(13] J.L. Walshi "The approximation of harmonic functions by harmonic
polynomials and by harmonic rational functions", Bull. Amer. Math.
Soc., vol. 35 (1929), pp. 199-544.

[14] J.L. Walsh, "On interpolation to harmonic functions by harmonic
polynomials", Proc. Nat. Acad. of Sciences, vol. 18 (1932) pp. 514-517.

[15] J.L. Walsh, Approximation by Polynomials in the Complex Domain, Mmorial
des Sciences Math matiques, fascicule LXXII I, Paris, 1935.

[16] J.L. Walsh, "Maximal convergence of sequences of harmonic polynomials",
Ann. of Math., vol. 38 (1937) pp. 321-354.

(17] J.L. Walsh, Interpolation and Approximation by Rational Functions in
the Complex Domain, Second Edition, Amer. Math. Soc. Colloquium
ulications; vol. 20, Providence, 1956.

[18] J.L. Walsh, "Solution of the Dirichlet problem for the ellipse by
interpolating harmonic polynomials", Journal of Math, and Mechanics,
vol. 9 (1960) pp. 193-196.

(19] J.L. Walsh, W.E. Sewell, and H.M. Elliott, "On the degree of polynomial
approximation to harmonic and analytic functions", Trans. Amer. Math.
Soc., vol. 67 (1949) pp. 381-420.

[20) A. Zygmund, Trigonometric Series, Cambridge University Press, Gambidg e,
1959.


